44,860 research outputs found

    S-Lemma with Equality and Its Applications

    Full text link
    Let f(x)=xTAx+2aTx+cf(x)=x^TAx+2a^Tx+c and h(x)=xTBx+2bTx+dh(x)=x^TBx+2b^Tx+d be two quadratic functions having symmetric matrices AA and BB. The S-lemma with equality asks when the unsolvability of the system f(x)<0,h(x)=0f(x)<0, h(x)=0 implies the existence of a real number μ\mu such that f(x)+μh(x)0, xRnf(x) + \mu h(x)\ge0, ~\forall x\in \mathbb{R}^n. The problem is much harder than the inequality version which asserts that, under Slater condition, f(x)<0,h(x)0f(x)<0, h(x)\le0 is unsolvable if and only if f(x)+μh(x)0, xRnf(x) + \mu h(x)\ge0, ~\forall x\in \mathbb{R}^n for some μ0\mu\ge0. In this paper, we show that the S-lemma with equality does not hold only when the matrix AA has exactly one negative eigenvalue and h(x)h(x) is a non-constant linear function (B=0,b0B=0, b\not=0). As an application, we can globally solve inf{f(x)h(x)=0}\inf\{f(x)\vert h(x)=0\} as well as the two-sided generalized trust region subproblem inf{f(x)lh(x)u}\inf\{f(x)\vert l\le h(x)\le u\} without any condition. Moreover, the convexity of the joint numerical range {(f(x),h1(x),,hp(x)): xRn}\{(f(x), h_1(x),\ldots, h_p(x)):~x\in\Bbb R^n\} where ff is a (possibly non-convex) quadratic function and h1(x),,hp(x)h_1(x),\ldots,h_p(x) are affine functions can be characterized using the newly developed S-lemma with equality.Comment: 34 page

    Stein factors for negative binomial approximation in Wasserstein distance

    Full text link
    The paper gives the bounds on the solutions to a Stein equation for the negative binomial distribution that are needed for approximation in terms of the Wasserstein metric. The proofs are probabilistic, and follow the approach introduced in Barbour and Xia (Bernoulli 12 (2006) 943-954). The bounds are used to quantify the accuracy of negative binomial approximation to parasite counts in hosts. Since the infectivity of a population can be expected to be proportional to its total parasite burden, the Wasserstein metric is the appropriate choice.Comment: Published at http://dx.doi.org/10.3150/14-BEJ595 in the Bernoulli (http://isi.cbs.nl/bernoulli/) by the International Statistical Institute/Bernoulli Society (http://isi.cbs.nl/BS/bshome.htm

    Searches for Gauge-Mediated SUSY Breaking Topologies with the L3 Detector at LEP

    Get PDF
    Searches for topologies predicted by gauge-mediated SUSY breaking models were performed using data collected with the L3 detector at LEP. All possible lifetimes of the next-to-lightest SUSY particle (NLSP), neutralino or scalar tau, were considered. No evidence for these new phenomena was found and limits on the production cross sections and sparticle masses were derived. A scan over the parameters of the minimal GMSB model was performed, leading to lower limits of 62.2 GeV, 11 TeV, and 0.07 eV on the NLSP mass, the mass scale parameter Lambda, and the gravitino mass, respectively. The status of the LEP combined searches is also discussed.Comment: 4 pages, 2 figures, 1 table; to appear in Proceedings of SUSY06, the 14th International Conference on Supersymmetry and the Unification of Fundamental Interactions, UC Irvine, California, 12-17 June 200

    Cavity-free nondestructive detection of a single optical photon

    Full text link
    Detecting a single photon without absorbing it is a long standing challenge in quantum optics. All experiments demonstrating the nondestructive detection of a photon make use of a high quality cavity. We present a cavity free scheme for nondestructive single-photon detection. By pumping a nonlinear medium we implement an inter-field Rabi-oscillation which leads to a ?pi phase shift on weak probe coherent laser field in the presence of a single signal photon without destroying the signal photon. Our cavity-free scheme operates with a fast intrinsic time scale in comparison with similar cavity-based schemes. We implement a full real-space multimode numerical analysis of the interacting photonic modes and confirm the validity of our nondestructive scheme in the multimode case.Comment: 4 figures, 5 page

    Development of a hybrid multi-scale simulation approach for spray processes

    Get PDF
    This paper presents a multi-scale approach coupling a Eulerian interface-tracking method and a Lagrangian particle-tracking method to simulate liquid atomisation processes. This method aims to represent the complete spray atomisation process including the primary break-up process and the secondary break-up process, paving the way for high-fidelity simulations of spray atomisation in the dense spray zone and spray combustion in the dilute spray zone. The Eulerian method is based on the coupled level-set and volume-of-fluid method for interface tracking, which can accurately simulate the primary break-up process. For the coupling approach, the Eulerian method describes only large droplet and ligament structures, while small-scale droplet structures are removed from the resolved Eulerian description and transformed into Lagrangian point-source spherical droplets. The Lagrangian method is thus used to track smaller droplets. In this study, two-dimensional simulations of liquid jet atomisation are performed. We analysed Lagrangian droplet formation and motion using the multi-scale approach. The results indicate that the coupling method successfully achieves multi-scale simulations and accurately models droplet motion after the Eulerian–Lagrangian transition. Finally, the reverse Lagrangian–Eulerian transition is also considered to cope with interactions between Eulerian droplets and Lagrangian droplets.This work was supported by the Engineering and Physical Sciences Research Council of the UK (grant number EP/L000199/1)
    corecore